Matrices with prescribed entries and characteristic polynomial

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of matrices with Laurent polynomial entries

Let P and Q be nr, r n matrices with Laurent polynomial entries. Suppose that Q T (z)P (z) = I r , z 2 Cnf0g. This note provides an algorithmatic construction of two n(nr) matrices G and H with Laurent polynomial entries such that the nn matrices

متن کامل

Controllability of pairs of matrices with prescribed entries

Let F be an infinite field and let (A1, A2) = [ a1,1 a1,2 a2,1 a2,2 ] , [ a1,3 a2,3 ] , where the entries ai,j ∈ F , i ∈ {1, 2}, j ∈ {1, 2, 3}. In this paper we establish necessary and sufficient conditions under which it is possible to prescribe some entries of  A1 A2  , so that the pair (A1, A2) is completely controllable. © 2011 Elsevier Ltd. All rights reserved.

متن کامل

On the characteristic polynomial of matrices with prescribed columns and the stabilization and observability of linear systems

Let A 2 F , B 2 F , where F is an arbitrary eld. In this paper, the possible characteristic polynomials of [A B ], when some of its columns are prescribed and the other columns vary, are described. The characteristic polynomial of [A B ] is de ned as the largest determinantal divisor (or the product of the invariant factors) of [xIn A B ]. This result generalizes a previous theorem by H. Wimmer...

متن کامل

Counting Integral Matrices with a given Characteristic Polynomial

We give a simpler proof of an earlier result giving an asymptotic estimate for the number of integral matrices, in large balls, with a given monic integral irreducible polynomial as their common characteristic polynomial. The proof uses equidistributions of polynomial trajectories on SL(n, R)/SL(n, Z), which is a generalization of Ratner’s theorem on equidistributions of unipotent trajectories....

متن کامل

Semidefinite inverse eigenvalue problems with prescribed entries and partial eigendata

In this paper, we study the semidefinite inverse eigenvalue problem of reconstructing a real n-by-n matrix C such that it is nearest to the original pre-estimated real n-by-n matrix Co in the Frobenius norm and satisfies the measured partial eigendata, where the required matrix C should preserve the symmetry, positive semidefiniteness, and the prescribed entries of the preestimated matrix Co. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1974

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1974-0349714-7